תפריט English Ukrainian רוסי עמוד הבית

ספרייה טכנית בחינם לחובבים ואנשי מקצוע ספריה טכנית בחינם


אינציקלופדיה של רדיו אלקטרוניקה והנדסת חשמל
ספרייה חינם / ערכות של מכשירים רדיו-אלקטרוניים וחשמליים

סודות של צליל צינור. האם עליי לבנות מגבר שפופרות? אנציקלופדיה של רדיו אלקטרוניקה והנדסת חשמל

ספריה טכנית בחינם

אנציקלופדיה של רדיו אלקטרוניקה והנדסת חשמל / מגברי כוח צינור

הערות למאמר הערות למאמר

Нужно ли строить ламповый усилитель? Конечно, хотя бы для того, чтобы узнать, что представляет собой этот знаменитый "ламповый звук". Кто не может построить сам, тот покупает в магазине или заказывает индивидуальный проект. Но все усилители звучат по-разному. Усилиями тысяч аудиофилов наметились пути построения ламповых усилителей, обладающих прекрасным звуком. Они не скрывают результатов своих экспериментов, издают журналы (например, "Вестник А.Р.А."), где публикуют удачные (и не очень!) схемные решения, упирая на редкостные, или весьма дорогие комплектующие и материалы. Гораздо меньше в этих изданиях уделяется внимания вопросам теории, больше "пускается пыль в глаза". Рекомендуется подбирать каждый элемент усилителя и слушать, слушать! И вот, очумевший от советов и прослушиваний, читатель уже бежит на рынок и ищет конденсаторы по 100 долларов за штуку или трансформатор за 500, рассчитывая с их помощью услышать знаменитый "ламповый звук".

Предприимчивые люди начали производить на потребу жаждущих разнообразные ламповые усилители и КИТы (наборы деталей). Заводы, производящие электровакуумные приборы, снова выпускают прямонакальные триоды (2С4С, 6С4С, 300В и т.д.). Печатаются любопытные сообщения: члены "общества господина Сакумы" (Японские аудиофилы) игнорируют усилители, если их стоимость менее 10000$. Короче говоря, прочно утвердилось мнение, что "ламповый звук" - это хорошо! А за большие деньги - еще лучше!

Как сравнивают усилители по звучанию? Разумеется, прослушивая музыкальные записи: грампластинки, CD, магнитофонные ленты. При этом приходится постоянно переключать несколько кабелей, что требует определенного времени. Учитывая краткосрочность музыкальной памяти, сравнение получается уже не таким надежным. Гораздо лучше подключить источник сигналов к входам обоих усилителей, а их выходы коммутировать на АС с помощью мощного переключателя.

Блок-схема такого тракта прослушивания приведена на рис. 1 (для простоты показан один канал).

סודות של צליל מנורה. האם אני צריך לבנות מגבר שפופרות?
תאנה. 1.

Здесь источник информации и громкоговорители - одни и те же для обоих усилителей. С помощью регуляторов RP1 и RP2 устанавливается одинаковая громкость звучания акустических систем (АС) при разных положениях переключателя SA1. Индикатор уровня PV1 может отсутствовать, но лучше, если он используется. Схема - простая и понятная.

Однако если мы будем сравнивать усилители с разными выходными сопротивлениями, неизбежны ошибки в оценке усилителей. В чем тут дело? А дело в том, что АС, как правило, имеют частотнозависимое внутреннее сопротивление Z. На рис. 2 показана примерная зависимость Z от частоты для двухполосной АС. Фазоинвертор на низких частотах имеет два пика вместо одного, но это сути дела не меняет. Если АС - трехполосная, то "горбов" на характеристеке Z(f) может быть больше. RE - сопротивление громкоговорителя на постоянном токе, оно приблизительно равно "номинальному" сопротивлению АС, т.е. Zשם = (1,2...1,3)RE. Чаще всего используются АС с номинальным сопротивлением 4 или 8 Ом. Аудиофилы любят громкоговорители для кино с номинальным сопротивлением 12 и 16 Ом за их высокую отдачу. Горбы на характеристике Z=Z(f) могут в 2 и более раз превосходить Zשם.

Тайны лампового звука. Нужно ли строить ламповый усилитель? Примерная зависимость Z от частоты для двухполосной АС
Рис. 2. Примерная зависимость Z от частоты для двухполосной АС

Совершенно очевидно, что при разных выходных сопротивлениях усилителей Rבחוץ и одинаковых ЭДС на их выходах, напряжение на АС будет разным, так как Rבחוץ и Z образуют делитель напряжения. Если выходные сопротивления усилителей не одинаковы, а они ведь могут быть и частотно-зависимыми, то АС будут звучать по-разному. Особенно это заметно при сравнении ламповых усилителей без обратной связи [1] и транзисторных, имеющих, как правило, глубокую отрицательную обратную связь. В первом случае Rבחוץ = 2...3 Ом, во втором - Rבחוץ = 0,1...0,01 Ом.

Ламповый усилитель будет подчеркивать те частоты, на которых Z возрастает. И действительно, НЧ и ВЧ у него звучат "лучше". Если частота раздела НЧ и ВЧ (fpaзд) в АС приходится на область 3 кГц, и на этой частоте имеется "горб", то лучше звучат струнные инструменты и голоса солистов. Напрашивается вывод, что частотная характеристика внутреннего сопротивления АС должна иметь как можно меньшую нелинейность, (в идеале - горизонтальная прямая), чтобы можно было сравнивать два разных усилителя.

Искусственно увеличив Rבחוץ для усилителя с малым внутренним сопротивлением, включив последовательный резистор Rд (рис. 3), получим одинаковые условия работы АС.

סודות של צליל מנורה. האם אני צריך לבנות מגבר שפופרות?
תאנה. 3.

Эти соображения были проверены на практике и полностью подтвердились. Сравнивались два стереофонических усилителя. Первый - ламповый, однотактный, на лампах 6Н23П и 2С4С, по схеме Loftin-White без ОС. Его основные параметры: Rבחוץ ~ 3 Ом, Рבחוץ ~ 3 Вт, ∆f = 12...40000 Гц. Выходные трансформаторы усилителя выполнены на сердечниках из стали типа 3409, S=15 см2, δ = 0,35 мм, l3 = 0,3 мм. Второй - транзисторный, с ООС, Rבחוץ ~ 0,01 Ом, Рבחוץ = 50 Вт, ∆f = 5...150000 Гц.

Нужно сказать, что этот ламповый однотактник на лампе 2АЗ (2С4С) считается чуть ли не "образцовым" УМЗЧ в среде аудиофилов. Правда, они оговаривают еще и дополнительные условия (спецпровода, спецприпой и т.п.). Звук его действительно хорош: резкий фронт (атака), большая прозрачность. "Через него" прекрасно звучат струнные и ударные инструменты.

Транзисторный усилитель был построен в соответствии с соображениями, изложенными автором в [2]. Время установления его переходной характеристики до погрешности 0,01% не превышает 10 мкс (на активном сопротивлении нагрузки).

В экспериментах использовались трехполосные АС с паспортной мощностью 70 Вт. Фазоинвертор настроен на частоту 25 Гц, частотная характеристика Z приведена в таблице:

f, kHz 0,05 0,1 0,2 0,5 1 2 4 6 8 15 20
Z, Ом 30 10 9 8 7 6 8 12 12 10 8

Сравнение усилителей проводилось при Рבחוץ = 3 Вт. АЧХ напряжения на клеммах АС при Rвых = 2...3 Ом приобретает подъем (до 3 дБ) на НЧ и ВЧ, в соответствии с ростом Z. Без Rд транзисторный усилитель звучит более "сухо", но как только включается Rд = 2,2 Ом, его звучание ничем (подчеркиваю - ничем!) не отличается от звучания лампового Loftin-White. Предлагаю желающим убедиться в этом самим.

Поговорив о входном сопротивлении АС, перейдем к выходному сопротивлению усилителя. Как уже отмечалось, оно оказывает большое влияние на качество звучания. Поэтому посмотрим, как его измерить. Существует несколько способов, но мы остановимся на том, который определен в ГОСТе 23849-87 [3]. Этот метод основан на пропускании синусоидального тока через выходные клеммы усилителя и измерении падения напряжения на его выходном сопротивлении Zi (рис. 4). Направление тока I на рисунке показано условно (от генератора в нагрузку). Данная схема не предназначена для измерения отрицательного Zi. Здесь R1 - активное сопротивление, равное номинальному сопротивлению нагрузки для данного УМЗЧ. Оно должно быть достаточной мощности, так как через него течет приличный ток (всего лишь в 3 раза меньший максимального). Падение напряжения на нем, измеряемое вольтметром PV2, должно быть на 10 дБ (в 3,16 раза) меньше номинального выходного напряжения усилителя. Генератор ЗЧ тоже должен быть достаточно мощным (например, Г3-109).

Схема измерений выходного сопротивления усилителя Zi
Рис. 4. Схема измерений выходного сопротивления усилителя Zi

В качестве усилителя для создания необходимого тока можно использовать второй канал стереоусилителя или любой другой УМЗЧ достаточной мощности. Если испытываемый усилитель имеет, например, Рשם = 50 Вт, Zשם = 4 Ом, то потребуется ток I = 1,1 А.

עכבת מוצא
Zi = R1*U1/U2, что полностью основано на законе Ома.

Вход усилителя можно закоротить, но лучше вместо перемычки поставить резистор, номинал которого равен сопротивлению источника сигнала. Измерения Zi ведутся на частоте 1 кГц.

Эта схема, при всей ее простоте, позволяет приоткрыть еще одну тайну "лампового звука". Вольтметр PV1 тогда нужно заменить чувствительным осциллографом, а частоту генератора ЗЧ менять от 20 Гц до 100 кГц.

Для лампового однотактного усилителя без обратной связи, работающего в классе А, мы увидим напряжение U1 в виде чистой синусоиды во всей рабочей полосе частот. Усилители, работающие в классе АВ, тем более - в В, и охваченные обратной связью, могут сильно искажать форму синусоидального тока, протекающего через Zi. Это говорит о том, что Zi нелинейно.

Для громадного большинства транзисторных усилителей это так. Причем на самых низких частотах напряжение U1 может быть синусоидальным, а по мере роста частоты оно искажается, и на частотах 20 кГц и более искажения могут быть очень большими, вплоть до удвоения частоты. А если измерить коэффициент гармоник такого усилителя по обычной методике, он может быть достаточно малым, например, всего 0,01%.

פרסום: cxem.net

ראה מאמרים אחרים סעיף מגברי כוח צינור.

תקרא ותכתוב שימושי הערות על מאמר זה.

<< חזרה

חדשות אחרונות של מדע וטכנולוגיה, אלקטרוניקה חדשה:

דרך חדשה לשלוט ולתפעל אותות אופטיים 05.05.2024

עולם המדע והטכנולוגיה המודרני מתפתח במהירות, ובכל יום מופיעות שיטות וטכנולוגיות חדשות שפותחות בפנינו אפשרויות חדשות בתחומים שונים. חידוש אחד כזה הוא פיתוח של מדענים גרמנים של דרך חדשה לשלוט באותות אופטיים, שעלולה להוביל להתקדמות משמעותית בתחום הפוטוניקה. מחקרים אחרונים אפשרו למדענים גרמנים ליצור לוח גלים שניתן לכוונן בתוך מוליך גל סיליקה מאוחה. שיטה זו, המבוססת על שימוש בשכבת גביש נוזלי, מאפשרת לשנות ביעילות את הקיטוב של האור העובר דרך מוליך גל. פריצת דרך טכנולוגית זו פותחת אפשרויות חדשות לפיתוח התקנים פוטוניים קומפקטיים ויעילים המסוגלים לעבד כמויות גדולות של נתונים. הבקרה האלקטרו-אופטית של הקיטוב שמספקת השיטה החדשה יכולה לספק את הבסיס לסוג חדש של התקנים פוטוניים משולבים. זה פותח הזדמנויות גדולות עבור ... >>

מקלדת Primium Seneca 05.05.2024

מקלדות הן חלק בלתי נפרד מעבודת המחשב היומיומית שלנו. עם זאת, אחת הבעיות העיקריות שעמן מתמודדים המשתמשים היא רעש, במיוחד במקרה של דגמי פרימיום. אבל עם מקלדת Seneca החדשה של Norbauer & Co, זה עשוי להשתנות. Seneca היא לא רק מקלדת, היא תוצאה של חמש שנים של עבודת פיתוח ליצירת המכשיר האידיאלי. כל היבט של מקלדת זו, ממאפיינים אקוסטיים ועד מאפיינים מכניים, נשקל ומאוזן בקפידה. אחד המאפיינים המרכזיים של Seneca הוא המייצבים השקטים שלה, הפותרים את בעיית הרעש המשותפת למקלדות רבות. בנוסף, המקלדת תומכת ברוחב מקשים שונים, מה שהופך אותה לנוחה לכל משתמש. למרות ש-Seneca עדיין לא זמין לרכישה, הוא מתוכנן לצאת בסוף הקיץ. Seneca של Norbauer & Co מייצגת סטנדרטים חדשים בעיצוב מקלדת. שֶׁלָה ... >>

המצפה האסטרונומי הגבוה בעולם נפתח 04.05.2024

חקר החלל והמסתורין שלו היא משימה שמושכת את תשומת לבם של אסטרונומים מכל העולם. באוויר הצח של ההרים הגבוהים, הרחק מזיהום האור בעיר, הכוכבים וכוכבי הלכת חושפים את סודותיהם בבהירות רבה יותר. עמוד חדש נפתח בהיסטוריה של האסטרונומיה עם פתיחתו של המצפה האסטרונומי הגבוה בעולם - מצפה הכוכבים אטקמה של אוניברסיטת טוקיו. מצפה הכוכבים אטקמה, הממוקם בגובה של 5640 מטר מעל פני הים, פותח הזדמנויות חדשות עבור אסטרונומים בחקר החלל. אתר זה הפך למיקום הגבוה ביותר עבור טלסקופ קרקעי, ומספק לחוקרים כלי ייחודי לחקר גלי אינפרא אדום ביקום. למרות שהמיקום בגובה רב מספק שמיים בהירים יותר ופחות הפרעות מהאטמוספירה, בניית מצפה כוכבים על הר גבוה מציבה קשיים ואתגרים עצומים. עם זאת, למרות הקשיים, המצפה החדש פותח בפני אסטרונומים אפשרויות מחקר רחבות. ... >>

חדשות אקראיות מהארכיון

וירוסים מסוכנים יותר לגברים מאשר לנשים 19.12.2016

ביולוגים מאוניברסיטת Royal Holloway בלונדון משוכנעים שחלק מהחיידקים והווירוסים עוברים שינויים כדי לגרום למחלות פחות מסוכנות או פשוט לא קטלניות בגוף הנשי. ומומחים הצליחו לגלות מדוע זה קורה.

המדענים הגיעו למסקנה שהיכולת של נשים להעביר חיידקים ווירוסים לילדיהן מספיקה כדי שהאבולוציה תניע פתוגנים לכיוון של השפעות שונות על גברים ונשים.

ביולוגים אומרים שהתיאוריה שלהם מסבירה מדוע לוקמיה של תאי T אנושית מתפתחת בצורה שונה ללוקמיה אצל גברים ונשים. אז, לוקמיה אצל נשים יפניות מתרחשת הרבה פחות מאשר אצל גברים יפנים. מדענים מאמינים שזה קורה בגלל שנשים ביפן מניקות את התינוקות שלהן בתדירות גבוהה יותר ויותר מאשר נשים בקריביים, למשל (אין הבדל בין מספר המחלות בגברים ובנשים). כתוצאה מכך, ביפן, הנגיף "עובר בתורשה".

החוקרים מציינים כי מנקודת מבט של אבולוציה, ה"חבל" של פתוגנים לנשים מוצדק לחלוטין.

עוד חדשות מעניינות:

▪ מקלט משדר 60 GHz עם כיול עצמי מובנה

▪ חור שחור בלתי אפשרי התגלה

▪ שגיאות למידה

▪ איך להגן על עצמך מפני שודדי ים

▪ החומר האפל נעשה כהה יותר

עדכון חדשות של מדע וטכנולוגיה, אלקטרוניקה חדשה

 

חומרים מעניינים של הספרייה הטכנית החופשית:

▪ קטע אתר התקני מחשב. בחירת מאמרים

▪ מאמר אנטומיה פתולוגית. עריסה

▪ מאמר מהו ההולנדי המעופף? תשובה מפורטת

▪ מאמר עזרה עם כוויות. בריאות

▪ מאמר דבק ומשחה לרצועות הנעה. מתכונים וטיפים פשוטים

▪ מאמר מכונה ללוחות קידוח. אנציקלופדיה של רדיו אלקטרוניקה והנדסת חשמל

השאר את תגובתך למאמר זה:

שם:


אימייל (אופציונלי):


להגיב:





כל השפות של דף זה

בית | הספרייה | מאמרים | <font><font>מפת אתר</font></font> | ביקורות על האתר

www.diagram.com.ua

www.diagram.com.ua
2000-2024