תפריט English Ukrainian רוסי עמוד הבית

ספרייה טכנית בחינם לחובבים ואנשי מקצוע ספריה טכנית בחינם


НАУКА ИЗОБРЕТАТЬ

ХИТРОСТЬ И ФИЗИКА

ואז הופיע ממציא (TRIZ)

ספרים ומאמרים / ואז הגיע הממציא

הערות למאמר הערות למאמר

ТРИЗ. Наука изобретать. Хитрость и физика

Вы прочитали треть книги. Если попытаться предельно сжато изложить смысл прочитанного, получится примерно следующее.

Изобретательские задачи издавна решались (да и сегодня еще решаются) методом проб и ошибок. Метод неэффективный, поэтому на решение задач приходилось тратить много усилий, времени, средств. Изобретения нередко запаздывают на многие годы. Научно - техническая революция потребовала принципиально новых методов изобретательства. Появилась теория решения изобретательских задач (ТРИЗ), она учит решать задачи, не перебирая "пустые" варианты. Основная идея такова: технические системы возникают и развиваются закономерно; изучение этих закономерностей дает приемы - инструменты для решения изобретательских задач.

Приемы, с которыми вы познакомились, можно разделить на три группы:

- различные хитрости, например прием "сделать заранее";

- приемы, основанные на использовании физических эффектов и явлений, к их числу можно отнести прием "изменить агрегатное состояние";

- комплексные приемы, включающие и хитрость, и физику, например построение феполей.

Чаще всего при решении изобретательских задач приходится применять сначала хитрость, потом физику. Успех достигается именно сочетанием того и другого. Поэтому применение физики при решении изобретательских задач - один из важнейших разделов теории изобретательства.

Посмотрим, как происходит стыковка хитрости и физики.

Задача 29. БУДЕТ РАБОТАТЬ ВЕЧНО!

На одном заводе часто выходила из строя машина-автомат. Это была очень хорошая машина, но в ней то и дело портилась простая деталь - изогнутая трубка, по которой сжатый воздух с большой скоростью гнал поток маленьких стальных шариков. Шарики били по стенке трубы в месте поворота и откалывали кусочки металла. Ударившись о стенку, каждый шарик оставлял едва заметную царапину, но за несколько часов шарики насквозь пробивали толстую, прочную трубу.

- Давайте поставим две трубы, - сказал начальник цеха, - Пока одна работает, другую успеем отремонтировать.

ואז הופיע ממציא.

- Разве это дело: все время заниматься ремонтом?! - воскликнул он. - Есть у меня подходящая идея... Гарантирую: машина будет работать вечно!

Потребовалось всего пять минут, чтобы осуществить идею изобретения. Что он предложил?

Итак, одно вещество (стальные шарики) механически взаимодействует с другим веществом (стенками трубы). Следовательно, дан ненужный (даже вредный) веполь. На заводе его пытались разрушить, вводя третье вещество - разные прокладки, прослойки. Это неправильно: надо, чтобы третье вещество одновременно защищало стенки и не разрушалось. Этим веществом могут стать те же шарики. Только неподвижные, остановившиеся у стенки трубы. Если изгиб трубы изнутри покрыть шариками, стенки перестанут разрушаться. Летящие шарики могут выбить один или несколько шариков из защитного слоя, но его место тут же заполнится одним из мчащихся по трубе шариков.

На этом хитрость заканчивается. Теперь нужна простая физика: как получить защитный слой шариков? Надо использовать магниты. Там, где труба изгибается, поставим снаружи магнит. Внутри к трубе сразу прилипнет слой шариков. Задача решена! Интересно отметить, что дробеметные аппараты для упрочнения деталей широко применялись по крайней мере за четверть века до появления авторского свидетельства № 261 207 на магнитную защиту. Все видели задачу, но решали ее вопреки теории - устанавливали прокладки, делали стенки аппарата из более прочной стали...

Задача 30. СВЕРХТОЧНЫЙ КРАН

Заведующий химической лабораторией пригласил изобретателя и сказал:

- Нам надо управлять потоком газа, который по этой металлической трубе идет из одного сосуда в другой. У нас есть краны с притертой стеклянной пробкой, но они не обеспечивают требуемой точности: трудно регулировать величину отверстия, по которому перетекает газ.

- Конечно, - сказал изобретатель, - вы бы еще самоварный кран поставили.

Химик сделал вид, что не расслышал замечания.

- Можно, - продолжал он, - поставить резиновую трубку и зажим. Но и это не дает нужной точности.

- Зажимы, - усмехнулся изобретатель. - Бельевые прищепки...

Тут химик не выдержал:

- Сотни лет так работаем. Попробуйте-ка придумать кран не сложнее "прищепки" или "самоварного крана", а по точности раз в десять лучше.

- Капелька хитрости плюс физика девятого класса. Надо сделать так...

Что предложил изобретатель?

Для специалиста по ТРИЗ кран - типичная вепольная система: корпус В1, поворачиваемая деталь В2 и поле механических сил Пмех. Под действием поля Пмех деталь В2 перемещается относительно корпуса В1, благодаря чему зазор между В1 и В3 становится шире или, наоборот, сужается. Веполь уже есть, но работает он неважно. Следовательно, придется заменить веполь, использовать другое поле. Какое именно - электрическое, магнитное, электромагнитное, тепловое?

Здесь хитрости кончаются и начинается физика. В учебнике физики для девятого класса есть целая глава о тепловом расширении! А нам как раз и надо менять ширину зазора между В1 и В2.

Открываем учебник. Вот и описание опыта: сквозь нагретое кольцо проходит шар, который до этого не проходил. Рисунок кольца и шара - готовая модель нашего крана.

Сравним полученное решение с авторским свидетельством № 179 489: "Устройство для дозировки малых количеств газа, состоящее из корпуса и стержня, плотно пригнанного с внутренней поверхности корпуса, отличающееся тем, что, с целью дозировки малых количеств газа с высокой степенью точности, корпус изготовлен из материала, имеющею большой коэффициент теплового расширения, а стержень из материала, коэффициент теплового расширения которого значительно меньше, чем у материала корпуса".

Наверное, вы уже поняли, как работает такой кран. При нагревании корпус расширяется сильно, а стержень слабо. Возникает зазор. Чем сильнее нагрет корпус, тем больше зазор.

ТРИЗ. Наука изобретать. Хитрость и физика

Смысл изобретения, как видите, в том, что вместо движения больших деталей, "железок", предложено использовать растяжение и сжатие кристаллической решетки. Кстати, растягивать и сжимать кристаллическую решетку можно не только тепловым полем. "Некоторые кристаллы, например кварц, сегнетова соль и турмалин, в электрическом поле меняют свои размеры: в зависимости от направления поля они сжимаются или растягиваются" это из учебника физики для десятого класса. Называется это явление обратным пьезоэффектом. Ну а о том, что обратный пьезоэффект можно использовать для создания микрокрана, вы и сами уже догадались. Есть еще похожий эффект - магнито-стрикция: магнитное поле растягивает (или сжимает) некоторые металлы. Тоже подходящий ответ для задачи о кране.

Задача 31. ЗАГЛЯНЕМ В БУДУЩЕЕ

Если надо выдавить из почти пустого тюбика остатки зубной пасты, тюбик кладут на твердую поверхность и прокатывают карандашом. Таков и принцип действия перистальтического насоса (см. рис.): ролики прижимают гибкий шланг к корпусу насоса и, двигаясь, заставляют жидкость или пасту перетекать по шлангу.

Мы выпускаем двадцать типов перистальтических насосов, - сказал главный инженер завода своему заместителю. - В ближайшие месяцы освоим еще три. Но в принципе все насосы одинаковы, отличаются они только размерами и назначением. Неужели и в будущем эти насосы не изменятся?

- Наверное, не изменятся, - ответил заместитель. - Ведь принцип один и тот же.

И тут появились изобретатели. Сразу трое!

Обязательно будут новые насосы, - заверил первый изобретатель. - Перистальтический принцип сохранится, но действие перейдет на микроуровень.

Предлагаем использовать для этого физические эффекты, - сказали его товарищи. - У нас три совершенно новых перистальтических насоса.

Изобретатели начали разворачивать чертежи...

Как, по вашему мнению, могут быть устроены эти насосы? Какие физические эффекты в них использованы?

Переход от грубого движения "железок" к тонкому перемещению молекул, атомов - закономерность развития техники. Отсюда и прием решения многих задач: "переход с макроуровня на микроуровень".

Вот, например, авторское свидетельство № 438 327: "Вибрационный гироскоп с массами, приводимыми в колебательное движение внешними переменными или электрическими полями, отличающийся тем, что в качестве колеблющихся масс применены электроны или заряженные ионы". В обычных вибрационных гироскопах колеблются массивные грузы - "гири", установленные на стержнях. Идея изобретения в том, что в качестве "гирь" взяты микрочастицы - электроны или ионы. Такой гироскоп намного компактнее, точнее и надежнее.

Когда в предыдущей главе вы читали о четырех этапах развития технических систем, у вас, возможно, возник вопрос: ну, хорошо, системы проходят четыре этапа, а что происходит с системами дальше? А дальше две возможности. Об одной я уже говорил: система, достигнув пределов развития, объединяется с другой системой и образует новую, более сложную систему - развитие продолжается. Например, велосипед, объединившись с двигателем внутреннего сгорания, превратился в мотоцикл. Возникла новая система, развитие продолжалось.

Иногда путь к объединению с другими системами закрыт. Объединяться надо - и объединяться нельзя... Такое противоречие преодолевают дроблением: разделим систему на несколько частей и построим нечто новое, соединив эти части. Запрет касался объединения с посторонними системами, мы этот запрет не нарушили.

Ну а если нельзя ни объединять, ни дробить? Предположим, поставлена задача: требуется усилить "пружинящие" свойства спиральной пружины, ничего не добавляя к ней и не дробя ее. Будем считать, что пружина сделана из самой подходящей стали, менять сталь нет смысла.

עוד >>

ראה מאמרים אחרים סעיף ואז הגיע הממציא.

תקרא ותכתוב שימושי הערות על מאמר זה.

<< חזרה

חדשות אחרונות של מדע וטכנולוגיה, אלקטרוניקה חדשה:

תכולת אלכוהול של בירה חמה 07.05.2024

לבירה, כאחד המשקאות האלכוהוליים הנפוצים ביותר, יש טעם ייחודי משלה, שיכול להשתנות בהתאם לטמפרטורת הצריכה. מחקר חדש של צוות מדענים בינלאומי מצא כי לטמפרטורת הבירה יש השפעה משמעותית על תפיסת הטעם האלכוהולי. המחקר, בראשות מדען החומרים ליי ג'יאנג, מצא כי בטמפרטורות שונות, מולקולות אתנול ומים יוצרות סוגים שונים של אשכולות, מה שמשפיע על תפיסת הטעם האלכוהולי. בטמפרטורות נמוכות נוצרים יותר אשכולות דמויי פירמידה, מה שמפחית את החריפות של טעם ה"אתנול" וגורם למשקה להיות פחות אלכוהולי. להיפך, ככל שהטמפרטורה עולה, האשכולות הופכים דמויי שרשרת יותר, וכתוצאה מכך טעם אלכוהולי בולט יותר. זה מסביר מדוע הטעם של כמה משקאות אלכוהוליים, כגון באייג'יו, יכול להשתנות בהתאם לטמפרטורה. הנתונים שהתקבלו פותחים סיכויים חדשים ליצרני משקאות, ... >>

גורם סיכון מרכזי להתמכרות להימורים 07.05.2024

משחקי מחשב הופכים לצורת בידור פופולרית יותר בקרב בני נוער, אך הסיכון הקשור להתמכרות למשחקים נותר בעיה משמעותית. מדענים אמריקאים ערכו מחקר כדי לקבוע את הגורמים העיקריים התורמים להתמכרות זו ולהציע המלצות למניעתה. במהלך שש שנים, עקבו אחר 385 בני נוער כדי לגלות אילו גורמים עלולים לגרום להם להתמכרות להימורים. התוצאות הראו ש-90% ממשתתפי המחקר לא היו בסיכון להתמכרות, בעוד ש-10% הפכו למכורים להימורים. התברר שהגורם המרכזי להופעת התמכרות להימורים הוא רמה נמוכה של התנהגות פרו-חברתית. בני נוער עם רמה נמוכה של התנהגות פרו-חברתית אינם מגלים עניין בעזרה ובתמיכה של אחרים, מה שעלול להוביל לאובדן הקשר עם העולם האמיתי ולהעמקת התלות במציאות מדומה שמציעים משחקי מחשב. בהתבסס על תוצאות אלה, מדענים ... >>

רעשי תנועה מעכבים את גדילת האפרוחים 06.05.2024

הצלילים שמקיפים אותנו בערים מודרניות הופכים נוקבים יותר ויותר. עם זאת, מעטים האנשים שחושבים כיצד הרעש הזה משפיע על עולם החי, במיוחד יצורים עדינים כמו אפרוחים שעדיין לא בקעו מהביצים שלהם. מחקרים עדכניים שופכים אור על נושא זה, ומצביעים על השלכות חמורות על התפתחותם והישרדותם. מדענים מצאו שחשיפה של אפרוחי יהלום זברה לרעש תנועה עלולה לגרום להפרעה חמורה בהתפתחותם. ניסויים הראו שזיהום רעש יכול לעכב באופן משמעותי את בקיעתם, ואותם אפרוחים שצצים מתמודדים עם מספר בעיות מקדמות בריאות. החוקרים מצאו גם שההשפעות השליליות של זיהום הרעש משתרעות על הציפורים הבוגרות. סיכויי רבייה מופחתים וירידה בפוריות מעידים על ההשפעות ארוכות הטווח שיש לרעש התנועה על חיות הבר. תוצאות המחקר מדגישות את הצורך ... >>

חדשות אקראיות מהארכיון

דיימלר הופכת תחנת כוח פחמית לאגירת אנרגיה 06.07.2018

מרצדס-בנץ אנרג'י, חברת בת של יצרנית הרכב הגרמנית דיימלר, התחברה עם שותפים ליצירת מתקן אחסון אנרגיה מאסיבי בתחנת הכוח הפחמית אלפרלינגסן באמצעות 1920 מודולי סוללה לכלי רכב חשמליים.

תחנת הכוח הפחמית שנבנתה ב-1912 נסגרה לאחרונה. מערכת 8,96 MW/9,8 MWh הפועלת בבניין שלה משתמשת בסך הכל ב-1920 סוללות. סוללות אלו יספיקו להנעת 600 רכבים חשמליים של דיימלר סמארט.

"אגירת אנרגיה גדולה היא סמל לשינוי האופן שבו אנרגיה מאוחסנת ושימוש בה, מאספקת חשמל לרשת ממקורות אנרגיה מאובנים, להרחבה בת קיימא של שרשרת הערך של הרכב החשמלי, שהפחיתה את פליטת ה-CO2", הגיב השקת מתקן האחסון של יצרנית הרכב.

מתקן האחסון שנבנה ישמש לשמירה על האיזון של מערכת האנרגיה הגרמנית. השותפים של Mercedes-Benz Energy בפרויקט זה היו ENERGIE ו-The Mobility House. זה עוקב אחר מספר פרויקטים אחרים של אחסון אנרגיה בקנה מידה גדול שבוצעה על ידי מרצדס בנץ אנרג'י. לדוגמה, בשנה שעברה בנו החברה והשותפים מתקן אחסון אנרגיה גדול יותר בהנהאוזן. הקיבולת שלו היא 17,4 MWh.

עוד חדשות מעניינות:

▪ גלוקומטר לייזר

▪ לחם מאובן

▪ דלק גרעיני בטוח המבוסס על תוריום

▪ רשת הובלה של חורי תולעת

▪ סוכר מזיק למוח

עדכון חדשות של מדע וטכנולוגיה, אלקטרוניקה חדשה

 

חומרים מעניינים של הספרייה הטכנית החופשית:

▪ קטע אתר פרמטרים של רכיבי רדיו. בחירת מאמרים

▪ כתבה חדקן של הרעננות השנייה. ביטוי עממי

▪ מאמר מי מהלוקאס ולמה זכה באוסקר? תשובה מפורטת

▪ מאמר ניהול אירועים ציבוריים. הוראה סטנדרטית בנושא הגנת העבודה

▪ מאמר גלאי מתכות בקטגוריית FD (תחום תדר). אנציקלופדיה של רדיו אלקטרוניקה והנדסת חשמל

▪ מאמר מתח PN-32. אנציקלופדיה של רדיו אלקטרוניקה והנדסת חשמל

השאר את תגובתך למאמר זה:

שם:


אימייל (אופציונלי):


להגיב:





כל השפות של דף זה

בית | הספרייה | מאמרים | <font><font>מפת אתר</font></font> | ביקורות על האתר

www.diagram.com.ua

www.diagram.com.ua
2000-2024